Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CRISPR J ; 7(2): 111-119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635329

RESUMO

Integration of a point mutation to correct or edit a gene requires the repair of the CRISPR-Cas9-induced double-strand break by homology-directed repair (HDR). This repair pathway is more active in late S and G2 phases of the cell cycle, whereas the competing pathway of nonhomologous end-joining (NHEJ) operates throughout the cell cycle. Accordingly, modulation of the cell cycle by chemical perturbation or simply by the timing of gene editing to shift the editing toward the S/G2 phase has been shown to increase HDR rates. Using a traffic light reporter in mouse embryonic stem cells and a fluorescence conversion reporter in human-induced pluripotent stem cells, we confirm that a transient cold shock leads to an increase in the rate of HDR, with a corresponding decrease in the rate of NHEJ repair. We then investigated whether a similar cold shock could lead to an increase in the rate of HDR in the mouse embryo. By analyzing the efficiency of gene editing using single nucleotide polymorphism changes and loxP insertion at three different genetic loci, we found that a transient reduction in temperature after zygote electroporation of CRISPR-Cas9 ribonucleoprotein with a single-stranded oligodeoxynucleotide repair template did indeed increase knockin efficiency, without affecting embryonic development. The efficiency of gene editing with and without the cold shock was first assessed by genotyping blastocysts. As a proof of concept, we then confirmed that the modified embryo culture conditions were compatible with live births by targeting the coat color gene tyrosinase and observing the repair of the albino mutation. Taken together, our data suggest that a transient cold shock could offer a simple and robust way to improve knockin outcomes in both stem cells and zygotes.


Assuntos
Edição de Genes , Hipotermia , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas/genética , Zigoto/metabolismo , Hipotermia/metabolismo , Reparo de DNA por Recombinação/genética
2.
Genome Res ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977820

RESUMO

Mammalian meiotic recombination proceeds via repair of hundreds of programmed DNA double-strand breaks, which requires choreographed binding of RPA, DMC1, and RAD51 to single-stranded DNA substrates. High-resolution in vivo binding maps of these proteins provide insights into the underlying molecular mechanisms. When assayed in F1-hybrid mice, these maps can distinguish the broken chromosome from the chromosome used as template for repair, revealing more mechanistic detail and enabling the structure of the recombination intermediates to be inferred. By applying CRISPR-Cas9 mutagenesis directly on F1-hybrid embryos, we have extended this approach to explore the molecular detail of recombination when a key component is knocked out. As a proof of concept, we have generated hybrid biallelic knockouts of Dmc1 and built maps of meiotic binding of RAD51 and RPA in them. DMC1 is essential for meiotic recombination, and comparison of these maps with those from wild-type mice is informative about the structure and timing of critical recombination intermediates. We observe redistribution of RAD51 binding and complete abrogation of D-loop recombination intermediates at a molecular level in Dmc1 mutants. These data provide insight on the configuration of RPA in D-loop intermediates and suggest that stable strand exchange proceeds via multiple rounds of strand invasion with template switching in mouse. Our methodology provides a high-throughput approach for characterization of gene function in meiotic recombination at low animal cost.

3.
Mol Biol Evol ; 38(12): 5555-5562, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491357

RESUMO

Sterility or subfertility of male hybrid offspring is commonly observed. This phenomenon contributes to reproductive barriers between the parental populations, an early step in the process of speciation. One frequent cause of such infertility is a failure of proper chromosome pairing during male meiosis. In subspecies of the house mouse, the likelihood of successful chromosome synapsis is improved by the binding of the histone methyltransferase PRDM9 to both chromosome homologs at matching positions. Using genetic manipulation, we altered PRDM9 binding to occur more often at matched sites, and find that chromosome pairing defects can be rescued, not only in an intersubspecific cross, but also between distinct species. Using different engineered variants, we demonstrate a quantitative link between the degree of matched homolog binding, chromosome synapsis, and rescue of fertility in hybrids between Mus musculus and Mus spretus. The resulting partial restoration of fertility reveals additional mechanisms at play that act to lock-in the reproductive isolation between these two species.


Assuntos
Infertilidade Masculina , Meiose , Animais , Pareamento Cromossômico , Fertilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Infertilidade Masculina/genética , Masculino , Meiose/genética , Camundongos
4.
Lab Anim (NY) ; 50(2): 49-52, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398200

RESUMO

For the production and rederivation of mouse strains, pseudopregnant female mice are used for embryo transfer and serve as surrogate mothers to support embryo development to term. Vasectomized males are commonly used to render pseudopregnancy in females, generated by surgical procedures associated with considerable pain and discomfort. Genetically modified mouse strains with a sterility phenotype provide a non-surgical replacement and represent an important application of the 3Rs (Replacement, Reduction, Refinement). However, the maintenance of such genetically modified mouse strains requires extensive breeding and genotyping procedures, which are regulated procedures under national legislation. As an alternative, we have explored the use of sterile male hybrids that result when two wild-type mouse subspecies, Mus musculus musculus and Mus musculus domesticus, interbreed. We find the male STUSB6F1 hybrid, resulting from the mating of female STUS/Fore with male C57BL/6J, ideally suited and demonstrate that its performance for the production of oviduct and uterine transfer recipients is indistinguishable when compared to surgically vasectomized mice. The use of these sterile hybrids avoids the necessity for surgical procedures or the breeding of sterile genetically modified lines and can be generated by the simple mating of two wild-type laboratory strains-a non-regulated procedure. Furthermore, in contrast with the breeding of genetically sterile mice, all male offspring are sterile and suitable for the generation of pseudopregnancy, allowing their efficient production with minimal breeding pairs.


Assuntos
Infertilidade , Vasectomia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez , Pseudogravidez , Vasectomia/veterinária
5.
Sci Rep ; 10(1): 17912, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087834

RESUMO

CRISPR/Cas9 machinery delivered as ribonucleoprotein (RNP) to the zygote has become a standard tool for the development of genetically modified mouse models. In recent years, a number of reports have demonstrated the effective delivery of CRISPR/Cas9 machinery via zygote electroporation as an alternative to the conventional delivery method of microinjection. In this study, we have performed side-by-side comparisons of the two RNP delivery methods across multiple gene loci and conclude that electroporation compares very favourably with conventional pronuclear microinjection, and report an improvement in mutagenesis efficiency when delivering CRISPR via electroporation for the generation of simple knock-in alleles using single-stranded oligodeoxynucleotide (ssODN) repair templates. In addition, we show that the efficiency of knock-in mutagenesis can be further increased by electroporation of embryos derived from Cas9-expressing donor females. The maternal supply of Cas9 to the zygote avoids the necessity to deliver the relatively large Cas9 protein, and high efficiency generation of both indel and knock-in allele can be achieved by electroporation of small single-guide RNAs and ssODN repair templates alone. Furthermore, electroporation, compared to microinjection, results in a higher rate of embryo survival and development. The method thus has the potential to reduce the number of animals used in the production of genetically modified mouse models.


Assuntos
Alelos , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Eletroporação/métodos , Técnicas de Introdução de Genes , Técnicas de Transferência de Genes , Camundongos Endogâmicos C57BL/embriologia , Camundongos Endogâmicos C57BL/genética , Microinjeções/métodos , Zigoto , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desenvolvimento Embrionário/genética , Feminino , Mutagênese/genética , Oligodesoxirribonucleotídeos , Ribonucleoproteínas
6.
Front Immunol ; 10: 2238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608060

RESUMO

Proteinuria is an adverse prognostic feature in renal diseases. In proteinuric nephropathies, filtered proteins exert an injurious effect on the renal tubulointerstitium, resulting in inflammation and fibrosis. In the present study, we assessed to what extent complement activation via the lectin pathway may contribute to renal injury in response to proteinuria-related stress in proximal tubular cells. We used the well-established mouse model of protein overload proteinuria (POP) to assess the effect of lectin pathway inhibition on renal injury and fibrotic changes characteristic of proteinuric nephropathy. To this end, we compared experimental outcomes in wild type mice with MASP-2-deficient mice or wild type mice treated with MASP-2 inhibitor to block lectin pathway functional activity. Multiple markers of renal injury were assessed including renal function, proteinuria, macrophage infiltration, and cytokine release profiles. Both MASP-2-deficient and MASP-2 inhibitor-treated wild type mice exhibited renoprotection from proteinuria with significantly less tubulointerstitial injury when compared to isotype control antibody treated mice. This indicates that therapeutic targeting of MASP-2 in proteinuric nephropathies may offer a useful strategy in the clinical management of proteinuria associated pathologies in a variety of different underlying renal diseases.


Assuntos
Proteínas do Sistema Complemento/imunologia , Nefropatias/imunologia , Lectinas/imunologia , Proteinúria/imunologia , Animais , Ativação do Complemento/imunologia , Citocinas/imunologia , Fibrose/imunologia , Rim/imunologia , Macrófagos/imunologia , Masculino , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...